本质语言允许用户在上述抽象级别指定约束问题,在该抽象级别进行约束建模决策。 Essence规范通过魅力自动建模工具精制到约束模型,该工具采用了一套细化规则。但是,本质是一种丰富的语言,其中有许多等同的方法来指定给定的问题。因此,用户可以省略域属性或抽象类型的使用,从而产生更少的细化规则,因此可以从中选择的减少的输出模型集。本文解决了在输入精华规范的变化面前自动恢复此信息以增加输出约束模型质量的稳健性。我们提出了可以更改决策变量的类型或添加缩小其域的属性的重构规则。我们展示了这种方法在模型的数量和质量方面的功效可以与原版相比,从转化的规格中产生。
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
在这项工作中,我们介绍了亲和力-VAE:基于其相似性在多维图像数据中自动聚类和对象分类的框架。该方法扩展了$ \ beta $ -vaes的概念,其基于亲和力矩阵驱动的知情相似性损失组件。与标准的$ \ beta $ -VAE相比,该亲和力VAE能够在潜在表示中创建旋转不变的,形态上均匀的簇,并具有改进的群集分离。我们探讨了2D和3D图像数据上潜在空间的潜在分离和连续性的程度,包括模拟的生物电子冷冻术(Cryo-ET)体积,作为科学应用的一个例子。
translated by 谷歌翻译
分子或材料的电子密度最近作为机器学习模型的目标数量受到了主要关注。一种自然选择,用于构建可传递可转移和线性缩放预测的模型是使用类似于通常用于密度拟合近似值的常规使用的原子基础来表示标量场。但是,基础的非正交性对学习练习构成了挑战,因为它需要立即考虑所有原子密度成分。我们设计了一种基于梯度的方法,可以直接在优化且高度稀疏的特征空间中最大程度地减少回归问题的损失函数。这样,我们克服了与采用以原子为中心的模型相关的限制,以在任意复杂的数据集上学习电子密度,从而获得极为准确的预测。增强的框架已在32个液体水的32个周期细胞上进行测试,具有足够的复杂性,需要在准确性和计算效率之间取得最佳平衡。我们表明,从预测的密度开始,可以执行单个Kohn-Sham对角度步骤,以访问总能量组件,而总能量组件仅针对参考密度函数计算,而误差仅为0.1 MEV/ATOM。最后,我们测试了高度异构QM9基准数据集的方法,这表明训练数据的一小部分足以在化学精度内得出地面总能量。
translated by 谷歌翻译
自动生物医学图像分析的领域至关重要地取决于算法验证的可靠和有意义的性能指标。但是,当前的度量使用通常是不明智的,并且不能反映基本的域名。在这里,我们提出了一个全面的框架,该框架指导研究人员以问题意识的方式选择绩效指标。具体而言,我们专注于生物医学图像分析问题,这些问题可以解释为图像,对象或像素级别的分类任务。该框架首先编译域兴趣 - 目标结构 - ,数据集和算法与输出问题相关的属性的属性与问题指纹相关,同时还将其映射到适当的问题类别,即图像级分类,语义分段,实例,实例细分或对象检测。然后,它指导用户选择和应用一组适当的验证指标的过程,同时使他们意识到与个人选择相关的潜在陷阱。在本文中,我们描述了指标重新加载推荐框架的当前状态,目的是从图像分析社区获得建设性的反馈。当前版本是在由60多个图像分析专家的国际联盟中开发的,将在社区驱动的优化之后公开作为用户友好的工具包提供。
translated by 谷歌翻译
了解文本文件中描述的运动很重要,因为运动的文本描述包含有关人,野生动物,商品等运动的大量地理和背景信息。我们的研究为改善我们对文本中的运动描述的理解提供了几项贡献。首先,我们展示了如何解释文本中描述的地理运动是具有挑战性的,因为一般空间术语,使得搬家不清楚的语言结构,以及许多类型的时间参考和分组等。接下来,作为克服这些挑战的一步,我们报告了人类受试者的实验,我们通过它识别人类用于区分一个运动描述的运动描述的多个重要特征(在文本中发现)。根据我们的经验结果,我们提供了在文本文档中描述的运动提供了用于计算分析的建议。我们的调查结果有助于了解有关文本描述形式的地理运动的未充分利用信息的重要特征的理解。
translated by 谷歌翻译
深度学习(DL)模型为各种医学成像基准挑战提供了最先进的性能,包括脑肿瘤细分(BRATS)挑战。然而,局灶性病理多隔室分割(例如,肿瘤和病变子区)的任务特别具有挑战性,并且潜在的错误阻碍DL模型转化为临床工作流程。量化不确定形式的DL模型预测的可靠性,可以实现最不确定的地区的临床审查,从而建立信任并铺平临床翻译。最近,已经引入了许多不确定性估计方法,用于DL医学图像分割任务。开发指标评估和比较不确定性措施的表现将有助于最终用户制定更明智的决策。在本研究中,我们探索并评估在Brats 2019-2020任务期间开发的公制,以对不确定量化量化(Qu-Brats),并旨在评估和排列脑肿瘤多隔室分割的不确定性估计。该公制(1)奖励不确定性估计,对正确断言产生高置信度,以及在不正确的断言处分配低置信水平的估计数,(2)惩罚导致更高百分比的无关正确断言百分比的不确定性措施。我们进一步基准测试由14个独立参与的Qu-Brats 2020的分割不确定性,所有这些都参与了主要的Brats细分任务。总体而言,我们的研究结果证实了不确定性估计提供了分割算法的重要性和互补价值,因此突出了医学图像分析中不确定性量化的需求。我们的评估代码在HTTPS://github.com/ragmeh11/qu-brats公开提供。
translated by 谷歌翻译
动机:近年来,基于形象的生物测定稳步成为高吞吐量,引发了快速自动化方法,以提取来自数百种图像的生物学有意义的信息。从想象成的成功取得灵感,我们驯服细胞造就花,一个公开源和弱标记的显微镜图像的大规模数据集(890K图像,894级)。预先训练的细胞造黄养箱产生了对上游显微镜分类任务的想象成特征具有竞争力的功能。我们展示了CytoImAgenet的证据表明,CytoImAgenet在想象中训练有素的功能中捕获信息不可用。数据集是在https://www.kaggle.com/stanleyhua/cyaagenet中提供的。
translated by 谷歌翻译
自动化数据驱动的建模,直接发现系统的管理方程的过程越来越多地用于科学界。 Pysindy是一个Python包,提供用于应用非线性动力学(SINDY)方法的稀疏识别到数据驱动模型发现的工具。在Pysindy的这一主要更新中,我们实现了几种高级功能,使得能够从嘈杂和有限的数据中发现更一般的微分方程。延长候选术语库,用于识别致动系统,部分微分方程(PDE)和隐式差分方程。还实施了包括Sindy和合奏技术的整体形式的强大配方,以提高现实世界数据的性能。最后,我们提供了一系列新的优化算法,包括多元稀疏的回归技术和算法来强制执行和促进不等式约束和稳定性。这些更新在一起,可以在文献中尚未报告的全新SINDY模型发现能力,例如约束PDE识别和使用不同稀疏的回归优化器合并。
translated by 谷歌翻译
最近已被证明大型语言模型在各种任务集中获得合理的零射普通化(Brown等,2020)。它已经假设这是语言模型的隐式多任务学习的结果,在语言模型中的预押(Radford等,2019)。可以通过明确的多任务学习直接引起零拍常规化?为了以缩放测试这个问题,我们开发一个系统,以便轻松地将任何自然语言任务映射到人类可读的提示表单中。我们转换一组大量的监督数据集,每个数据集都有多个提示,具有不同的措辞。这些提示的数据集允许基准测试模型执行完全看不见的任务的能力。我们介绍了一个普拉克尔编码器 - 解码器模型(Raffel等,2020; Lester等,2021),覆盖各种任务。该模型在多个标准数据集中达到强大的零点性能,通常优于其尺寸的型号超过16倍。此外,我们的方法对来自Big-替补基准测试的任务子集具有强烈性能,优于其尺寸的6倍。所有提示和培训的型号都可以在https://github.com/ bigscience-workshop / protectsource / httpsource / https://huggingface.co/bigscience/t0pp。
translated by 谷歌翻译